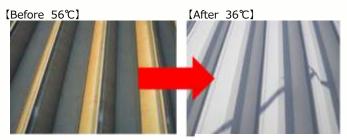
Proposal to apply

Effectiveness of Heat Shield Paint At Warehouse in Singapore.

Simulation for Effectiveness of Heat Shield Paint


The heat shield paint is one of the most effective way to reduce the radiant heat restraint in the inside of the building.

You can expect to improve the work environment by reducing the temperature inside of the building. We prove the heat shield paint, Adgreencoat, has the own-distinctive functionality, such as high solar reflective and heat exhaust, which can effectively release the heat from the sun.

Notes

1. As the simulation results, it significantly reduces heat load from the roof (radiant heat) by the heat shield paint, Adgreencoat. Also it is to contribute greatly reducing the room temperature.

2. In consideration of radiant heat and the humidity, the sense of summer heat is greatly reduced. In the state of no air conditioning, I can expect a reduction of about 4 $^{\circ}$ C indoor temperature. (See attachment)

*****STEEL PLATE ROOF STRUCTURE (*Proof level by the maker)

(Please refer to an attached sheet)

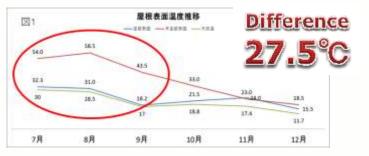
Warehouse 1,000m The simulation results			
Indoor (the upper part) suppression effect at a peak period	14.2℃		
Indoor (the lower part) suppression effect at a peak period	4℃		

Reduce the radiant heat in the inside of the warehouse.

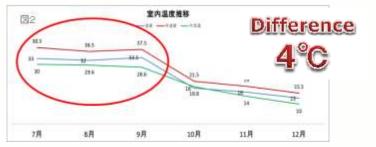
^{*} The photograph is an image

項目	無塗装	(遮熱塗装) アドグリーンコート®	備考	
Sq. measure (㎡)	1,010		Target roof sq. measure (* calculated by a drawing)	
coefficient of subgrade reaction (with radiant heat consideration)	4.230	4.221	Calculated on the basis of the original data which was taken into account by the radiant heat from roof structure.	
Outside Roof temp (°C) (expected)	56	36	Paint maker investigation (reflect the temperature difference due to the demonstrated value)	
Indoor temperture (°C)	36		Inside temperature(expected)	
Heat penetration calorific value (kcal/h)	93,991	8,526	Difference of heat intrusion from the roof surface	
Calorific value reduction (kcal/h)	_	85,464	Heat transfer loss (no paint) - Heat transfer loss (after paint application / construction)	
The Simulation Result				
Indoor (the upper part) suppression effect at a peak period		14.2℃	*2m range to upper part	
Indoor (the lower part) suppression effect at a peak period		4℃	*2m range to lower part	

_Note $1.006J/g·K 1.24×10-3g/cm3 density × cubic volumeQ(cal. value)=m[g]mass×c [J/g·K] specific heat×⊿T [K]temp difference⊿T(temp difference)=Q (cal. value) ÷ (c (specific heat) ×m (mass))Convert reduce thermal units to Joule$	<conditions> *def.as more than 30°C •Coefficient of subgrade reaction (K value) /Calculated in consideration of the radiant heat by the roof structure •Outside Roof Temp /Paint maker investigation(reflect the temperature difference due to the demonstrated value) •No inside heat resource factors expected. •Target roof :1,010m (* remove eaves) •cubic content : 7,272m •Thermal conductivity :Steel sheet 0.8t</conditions>
--	--

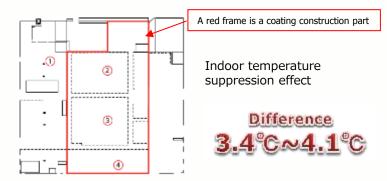

*Each value are changeable, conditional on heat insulated structure, air conditioner efficiency, human factor, heat exhausting equipment, etc. There is the case that is different from the real-valued simulation. Please assume it a reference level.

Temperature suppression effect Other companies example


•House maker factory (Japan) Roof : Galvalume <27,000m > %Measurement period : From July,2012 to December.

• Suppression effect of the roof temperature

● Indoor temperature suppression effect



•Wood system material factory (Japan) Roof : Galvalume <10,584m²>

•to compare (am9:00 am12:00 pm3:00)

•Last year (01-Jul-2011~31-Aug-2011 *measurement of 123) •After the painting (17-Jul-2012~31-Aug-2012 *measurement of 75) •I compare the temperature of (① no painting) for the standard value

<Non coating more than 30℃>

Measurement point	Before	After	Difference
2	+0.6℃	-2.8℃	3.4℃
3	+1.2℃	-2.9℃	4.1℃
(4)	+2.0℃	-2.0℃	4.0℃